
GENETIC PROGRAMMING:
PROGRAMMING COMPUTERS BY
MEANS OF NATURAL SELECTION

WEDNESDAY – JUNE 4, 1997
PASADENA

JOHN R. KOZA
Consulting Professor

Computer Science Department and Symbolic Systems Program
258 Gates Building
Stanford University

Stanford, CA 94305 USA
E-MAIL: Koza@Cs.Stanford.Edu

PHONE: 415-941-0336
FAX: 415-941-9430

WWW: http://www-cs-
faculty.stanford.edu/~koza/

OUTLINE

• Background on Genetic Algorithm
• Genetic Programming

• Example of GP
• Automatically Defined Functions (ADFs)
• Memory, State, Mental Models, Data
structures
• Iteration and recursion
• Evolutionary Selection of Architecture
• Evolution of Architecture using
Architecture-Altering Operations
• Implementation on parallel computer
• Rapidly Reconfigurable field-programmable
gate arrays (FPGAs) and evolable hardware
• Implementation of GP in assembly code
• Cellular encoding (Developmental GP)
• Selected problems where GP is competitive
with human solutions
• Automated design of analog circuits
• Promising application areas for GP
• Directions for possible future research
• Bibliography, conferences, E-Mail lists,
WWW and FTP sites

THE GENETIC ALGORITHM (GA)

• The genetic algorithm is a mathematical
algorithm that transforms a set (population)
of mathematical objects (typically fixed-
length binary character strings), each with an
associated fitness value, into a new set (new
generation of the population) of offspring
objects, using operations patterned after
naturally-occurring genetic operations and
the Darwinian principle of reproduction and
survival of the fittest.

EXAMPLE (POPULATION OF 4 STRINGS
OF LENGTH 3 OVER ALPHABET OF

SIZE 2)

Generation 0 Generation 1

Individuals Fitness Offspring
in Population Measure Population
011 $3 111

001 $1 –––> 010
110 $6 110
010 $2 010

FLOWCHART FOR THE BASIC
GENETIC ALGORITHM

Perform Reproduction

Yes

No

Gen := Gen + 1

Select Two Individuals
Based on Fitness

Perform
Crossover

Insert Offspring
into New

Population

Perform Mutation Insert Mutant into
New Population

Copy into New
Population

i := i + 1

Select One Individual
Based on Fitness

PR

Pc

Pm

Select Genetic Operation

i = M?

i := 0

Create Initial Random
Population for Run

No

Termination Criterion
Satisfied for Run?

Yes

Gen := 0
No

Run := Run + 1

Designate
Result for Run

Run = N?

End

Yes

Run := 0

i := 0

i := i + 1i = M?

Apply Fitness Measure to Individual in the Population

Yes

No

Select One Individual
Based on Fitness

PROBABILISTIC SELECTION

INDIVIDUALS ARE SELECTED TO
PARTICIPATE IN THE GENETIC

OPERATIONS BASED ON FITNESS

• Better individuals are usually chosen
• The best individual is not necessarily chosen
• The worst individual is not necessarily
excluded

• Thus, there is SOME greedy hill-climbing

• But, there is considerable selection of
individuals that are the INFERIOR nased on
the current evidence of the search

• Resembles simulated annealing
• Unlike almost everything else

THE PROBLEM OF AUTOMATIC
PROGRAMMING (PROGRAM

SYNTHESIS)

"How can computers learn to solve problems
without being explicitly programmed? In
other words, how can computers be made to
do what is needed to be done, without being
told exactly how to do it?"

---Attributed to Arthur Samuel - about 1959

AUTOMATIC PROGRAMMING

"WYWIWYG" – "WHAT YOU WANT IS
WHAT YOU GET"

• Produces an entity that runs on a computer
(i.e., a computer program or something that
is easily convertible into a program)
• Requires a minimum of user-supplied
information
• Solves a broad variety of problems
• Scalability to larger problems
• Implements all the familiar programming
constructs – parameterizable subroutines,
memory, iteration, recursion, data structures
• Doesn't require the user to prespecify the
size and shape of the solution
• Doesn't require the user to identify
subgoals, handcraft operators, decompose
the problem, or intervene interactively
during the run
• Produces some results that are competitive
with human performance by programmers,

designers, or mathematicians or that are
publishable in their own right
• Is well-defined, has no hidden steps, and
produces replicable results

GENETIC PROGRAMMING (GP)

"Genetic programming is automatic
programming. For the first time since the
idea of automatic programming was first
discussed in the late 40's and early 50's, we
have a set of non-trivial, non-tailored,
computer-generated programs that satisfy
Samuel's exhortation: Tell the computer
what to do, not how to do it.' "

– John Holland, University of Michigan, 1997

FIVE MAJOR PREPARATORY STEPS
FOR GP

• Determining the set of terminals
• Determining the set of functions
• Determining the fitness measure
• Determining the parameters

• population size
• number of generations
• other minor parameters

• Determining the method for designating a
result and the criterion for terminating a run

Terminal Set

Function Set

Fitness Measure

Parameters

Termination
Criterion

GP A Computer
Program

10 FITNESS-CASES SHOWING THE
VALUE OF THE DEPENDENT

VARIABLE, D, ASSOCIATED WITH THE
VALUES OF THE SIX INDEPENDENT

VARIABLES, L0, W0, H0, L1, W1, H1

Fitness
case

L0 W0 H0 L1 W1 H1 D

1 3 4 7 2 5 3 54
2 7 10 9 10 3 1 600
3 10 9 4 8 1 6 312
4 3 9 5 1 6 4 111
5 4 3 2 7 6 1 –18
6 3 3 1 9 5 4 –171
7 5 9 9 1 7 6 363
8 1 2 9 3 9 2 –36
9 2 6 8 2 6 10 –24
10 8 1 10 7 5 1 45

SOLUTION USING GENETIC
PROGRAMMING WITHOUT
AUTOMATICALLY DEFINED

FUNCTIONS (ADFs)

(- (* (* W0 L0) H0)

 (* (* W1 L1) H1))

D = W0*L0*H0 – W1*L1*H1

W0 H0

* L0

*

*

L1 H1

*

W1

—

L1

W1

H1

L0

W0

H0

AUTOMATICALLY DEFINED
FUNCTIONS

TOP-DOWN VIEW OF THREE STEP
HEIRARCHICAL PROBLEM-SOLVING

PROCESS

Subproblem 1

Subproblem 2

Subproblem 3

Original
problem

Solution to
original problem

Solution to subproblem 1

Solution to subproblem 2

Solution to subproblem 3

Decompose Solve
subproblems

Solve original
problem

• Decompose a problem into subproblems

• Solve the subproblems

• Assemble the solutions of the subproblems
into a solution for the overall problem

AN OVERALL COMPUTER PROGRAM
CONSISTING OF ONE FUNCTION-

DEFINING BRANCH AND ONE RESULT-
PRODUCING BRANCH

DEFUN

PROGN

VALUES

Argument
List

ADF0

Body of ADF0
Function Definition

VALUES

1

2

3 4 5

6

7
Body of Result

Producing Branch

8

100%-CORRECT PROGRAM FOR THE
TWO-BOXES PROBLEM with ADFS

(progn

(defun volume (arg0 arg1 arg2)

(values

(* arg0 (* arg1 arg2))))

(values (- (volume L0 W0 H0)

(volume L1 W1 H1))))

progn

(ARG0 ARG1 ARG2)

defun

ARG0 *

ARG2ARG1

*

valuesVOLUME

—

values

L1 W1 H1

VOLUME

W0 H0L0

VOLUME

AUTOMATICALLY DEFINED
FUNCTIONS

BOTTOM-UP VIEW OF THREE STEP
HEIRARCHICAL PROBLEM-SOLVING

PROCESS

Identify
regularities

Change
representation Solve

Third recoding rule

Second recoding rule

First recoding rule

Original
representation

of the
problem

New
representation

of the
 problem

Solution to
problem

• Identify regularities

• Change the representation

• Solve the overall problem

AFTER THE CHANGE OF
REPRESENTATION, THERE ARE TWO

NEW VARIABLES – V0 ANDV1

Fitness
case

L0 W0 H0 L1 W1 H1 V0 V1 D

1 3 4 7 2 5 3 84 30 54
2 7 10 9 10 3 1 630 30 600
3 10 9 4 8 1 6 360 48 312
4 3 9 5 1 6 4 135 24 111
5 4 3 2 7 6 1 24 42 –18
6 3 3 1 9 5 4 9 180 –171
7 5 9 9 1 7 6 405 42 363
8 1 2 9 3 9 2 18 54 –36
9 2 6 8 2 6 10 96 120 –24
10 8 1 10 7 5 1 80 35 45

8 MAIN POINTS – AUTOMATICALLY
DEFINED FUNCTIONS

• ADFs work.
• ADFs do not solve problems in the style of
human programmers.
• ADFs reduce the computational effort
required to solve a problem.
• ADFs usually improve the parsimony of
the solutions to a problem.
• As the size of a problem is scaled up, the
size of solutions increases more slowly with
ADFs than without them.
• As the size of a problem is scaled up, the
computational effort required to solve a
problem increases more slowly with ADFs
than without them.
• The advantages in terms of computational
effort and parsimony conferred by ADFs
increase as the size of the problem is scaled
up.

• Genetic programming can evolve the
architecture of the solution to a problem at
the same time that it solves a problem.

SIX MAJOR PREPARATORY STEPS FOR
GENETIC PROGRAMMING WITH

AUTOMATICALLY DEFINED
FUNCTIONS (ADFs)

• determining the set of terminals
• determining the set of functions
• determining the fitness measure
• determining the parameters

• population size
• number of generations
• other minor parameters

• determining the method for designating a
result and the criterion for terminating a run
• determining the architecture of the overall
program

• number of ADFs
• number of arguments possessed by each
ADF
• hierarchical references, if any, among the
ADFs

Terminal Set

Function Set

Fitness Measure

Parameters
Termination
Criterion

GP A Computer
Program

Architecture

APPROACHES TO MEMORY, STATE,
AND MENTAL MODELS

(A) (B) (C) (D)

• (A) Settable variables (Genetic
Programming, Koza 1992) using terminals M0
and M1 and functions (SETM0 X) and
(SETM1 Y)
• (B) Indexed memory similar to linear
computer memory (Teller 1994) using (READ
K) and(WRITE X K)
• (C) Memory isomorphic to world (Andre
1994)
• (D) Point-labeled, line-labeled directed
graphs (Brave 1995, 1996)

LANGDON'S DATA STRUCTURES
• Stacks

• Queues
• Lists
• Rings

ITERATION

• Four parts
• initialization branch
• termination branch
• work-performing branch
• update branch

• Problems
• nested iterations
• unsatisfiable termination predicates

• DU ("Do Until") operation (GP-1)
• number of steps in an iteration
• number of iterations

• Restricted iteration (GP-2)
• Rationing dynamically created iterations

• Restricted Iteration Creation (RIC)
• Iteration Group Creation (IGC)

RESTRICTED ITERATION

Overall program consisting of an
automatically defined function ADF0, an
iteration-performing branch IPB0 , and a
result-producing branch RPB0.

progn

Body of ADF0
Function Definition

Argument
List valuesADF0

defun

Body of Iteration
Performing Branch

IPB0

looping-over-
known-finite-set values

Body of Result-
Producing Branch

RPB0

FINDING THE ARCHITECTURE OF THE
AUTOMATICALLY DEFINED

FUNCTIONS

MANUAL METHODS

• prospective analysis of the problem
• seemingly sufficient capacity (over-
specification)
• affordable capacity
• retrospective analysis of the results of
actual runs

AUTOMATED METHODS

• evolutionary selection of the architecture
• evolution of architecture using architecture-
altering operations

POINT TYPING – STRUCTURE-
PRESERVING CROSSOVER –

ARCHITECTURALLY DIVERSE
POPULATION

Parent A with an argument map of {3, 2}

defun

ADF0 values(ARG0 ARG1 ARG2)

progn

defun

values(ARG0 ARG1)ADF1

NOR

ADF0

ARG0 ARG0ARG1

AND

ARG0ARG1

values

ADF1

D4

D1

ADF0

D0

D3D2

OR

OR

AND

ARG2 ARG0ARG0

NAND

ARG1

100

101

102 103

104

105 106

107

108

109 110 111

112

113 114

115

116 117

118 119 120

121 122

Parent B with an argument map of {3, 2, 2}
defun

ADF0 values(ARG0 ARG1 ARG2)

AND

ARG0

NOR

ARG2 ARG1

OR

ARG1

defun

values(ARG0 ARG1)ADF1

NAND

ARG0 ARG1

OR ADF0

ARG0 ARG1 ARG1

defun

values(ARG0 ARG1)ADF2

OR

ADF0

ARG0ARG1

ARG0 ARG1

ANDARG0 ARG1

ADF1

values

D1

ADF0

D0 ADF1

D3D2

AND

D4

progn

200

201

202 203

204

205 206

207

208

209 210

211

212 213 214

215

216

217 218

219

220 221 222

223 224

225

226 227

228 229 230

231 232

Parent C with an argument map of {4, 2}
progn

defun

ADF0 values(ARG0 ARG1 ARG2 ARG3)

OR

ARG3

OR

ARG0

NAND

ARG1

ARG2 ARG1

NOR

defun

values(ARG0 ARG1)ADF1

NOR

ARG0 ARG1

NORADF0

ARG0 ARG0ARG1 OR

values

ADF1

D4 ADF0

D1 D0 ADF1

D1 D2D3

AND

D0

300

301

302

303 304

305

306

307 308

309

310

311

312 313

314

315

316 317

318

319 320

321 322

323 324

325 326

327 328

NEW ARCHITECTURE-ALTERING
OPERATORS

SPECIALIZATION – REFINEMENT –
CASE SPLITTING

• Branch duplication
• Argument duplication
• Branch creation
• Argument creation

GENERALIZATION

• Branch deletion
• Argument deletion

PROTEIN ALIGNMENT OF "A" AND "B"
PROTEINS

First.protein MRIKFLVVLA VICLFAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50
Second.protein MRIKFLVVLA VICLLAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50

First.protein ESSEYEIEVI KHQKEKTEKK EKEKKTHVET KKEVKKKEKK QIPCSEKLKD 100
Second.protein DSSEYEIEVI KHQKEKTEKK EKEKKAHVEI KKKIKNKEKK FVPCSEILKD 100

First.protein EKLDCETKGV PAGYKAIFKF TENEE-CDWT CDYEALPPPP GAKKDDKKEK 149
Second.protein EKLECEKNAT P-GYKALFEF KESESFCEWE CDYEAI---P GAKKDEKKEK 146

First.protein KTVKVVKPPK EKPPKKLRKE CSGEKVIKFQ NCLVKIRGLI AFGDKTKNFD 199
Second.protein KVVKVIKPPK EKPPKKPRKE CSGEKVIKFQ NCLVKIRGLI AFGDKTKNFD 196

First.protein KKFAKLVQGK QKKGAKKAKG GKKAAPKPGP KPGPK----Q ADKP------ 239
Second.protein KKFAKLVQGK QKKGAKKAKG GKKAEPKPGP KPAPKPGPKP APKPVPKPAD 246

First.protein --KDAKK 244
Second.protein KPKDAKK 253

PROGRAM WITH 1 TWO-ARGUMENT
AUTOMATICALLY DEFINED FUNCTION

(ADF0) AND 1 RESULT-PRODUCING
BRANCH – ARGUMENT MAP OF {2}

progn
400

defun

ADF0 values

OR

ARG1

ARG0ARG1

AND

LIST

410

411

412 419

ARG1ARG0
413 414 420

421
422

423 424

values

AND

D1 D2 D0

D3

D4 D0

ADF0 NAND

ADF0

NOR

470

481

482 483 486

480

485

487

489

490

488

491

PROGRAM WITH ARGUMENT MAP OF
{2, 2} CREATED USING THE OPERATION

OF BRANCH DUPLICATION

progn

defun

ADF0 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

541

520

values

AND

D1 D2 D0

D3

D4 D0

ADF1 NAND

ADF0

NOR

defun

ADF1 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

550

549

500

510

511

540 570

581

582 583

588

587

589

590 591

519

543 544

542

PROGRAM WITH ARGUMENT MAP OF
{3) CREATED USING THE OPERATION

OF ARGUMENT DUPLICATION

progn

defun

ADF0 values

OR

ARG2 AND

LIST

610

611 612 619

ARG0

613

ARG1

614 620

621
622

623

ARG1

624

ARG2
615

ARG0

values

AND

D1 D2 D0

D3

ADF0 NAND

ADF0

D4 D0

NOR

670

681

682 683

687

690

688

691

D2

684

D4 D0

NOR
689 695

696 697

600

PARALLELIZATION OF GA OR GP

• The computational burden of GA or GP is
concentrated in the task of measuring the
fitness for each fitness case for each
individual in the population for each
generation

• Time-consuming primitive functions
• Lengthy simulations
• Complicated state transition calculations
• Different initial conditions
• Series of probabilistic experiments

• However, not coupled

PARALLELIZATION OF GA OR GP

• By individuals in the population
• Timing (Program size, Simulation time)

• By fitness cases
• Timing (Simulation time, Protein length)
• Matching between hardware and problem

• By "Demes" ("Island" model)
• No synchronization of islands
• Occasional small amounts of migration (low
band width requirement for communication)
• Emigrants go (fitness-based selection)
• Immigrants arrive and are absorbed (fitness-
based making of space)
• Fault-tolerant

PARALLEL GA / GP SYSTEM

VB
PROCESS

DEBUGGER
(Tram)

BOSS
(Tram)

VB
FILE

HOST
(Pentium PC)

OUTPUT
FILE

CONTROL
PARAMETER

FILE

VIDEO
DISPLAY

KEYBOARD

MESH
NODE
(Tram)

MESH
NODE
(Tram)

MESH
NODE
(Tram)

MESH
NODE
(Tram)

MESH
NODE
(Tram)

MESH
NODE
(Tram)

MESH
NODE
(Tram)

MESH
NODE
(Tram)

MESH
NODE
(Tram)

• 3 lines of 2-way communication exist within
the overall system

• between the Host and the Boss process,
• between the Boss process and all 64 (only 9
shown above) processing nodes of the
network, and
• between (toroidally) adjacent processing
nodes of the network.

THE FOUR INTER-COMMUNICATING
PROCESSES OF EACH OF THE 64

PROCESSING NODES

BREEDER

MONITOR

EXPORTER IMPORTER

Buffer Buffer

From Boss

To Boss

To North

To East
From North

To South

To West

From East

From South

From West

NOVEL WAYS TO MEASURE FITNESS

• Evaluate fitness by operating a tethered
robot in actual environment for a certain
period of time (e.g., 30 seconds)

• Evaluate fitness of electrical filter circuit by
connecting computer to a bread-board with
the circuit and collecting outputs for
particular inputs

• Evaluate fitness by using field-
programmable gate arrays (FPGA) to
process thousands (or millions) of fitness
cases (combinations of inputs) at very high
speed

• Laboratory experiments lasting a day or
longer for each fitness case of each
generation of a run

EVOLVABLE HARDWARE

RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS

(FPGAs)

FUNCTION UNIT FOR ONE CELL OF
THE XILINX XC6216 CHIP

EVOLVABLE HARDWARE

RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS

(FPGAs)

ONE CELL OF THE XILINX XC6216 CHIP

EVOLVABLE HARDWARE

RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS

(FPGAs)

SORTING NETWORKS

A 1

A 2

A 3

A 4

EVOLVABLE HARDWARE

32 � 64 PORTION OF THE XILINIX
XC6216 CHIP FOR SORTING

NETWORKS

H G F E
D

CBA

EVOLVABLE HARDWARE

IMPLEMENTATION OF (COMPARE–
EXCHANGE 2 5) IN TOP 6 CELLS OF

ONE 1 � 16 VERTICAL COLUMN OF THE
XILINIX XC6216 CHIP FOR SORTING

NETWORKS

EVOLVABLE HARDWARE

RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS

(FPGAs)

SORTING NETWORKS

• A 16-step 7-sorter was evolved that has two
fewer steps than the sorting network
described in O'Connor and Nelsons' patent
(1962) and that has the same number of steps
as the 7-sorter that was devised by Floyd and
Knuth subsequent to the patent and
described in Knuth 1973.

• Evolved reversible sorting networks for 4,
5, and 6 items for Mathemania contest.

IMPLEMENTATION OF GP IN
ASSEMBLY CODE – COMPILED

GENETIC PROGRAMMING SYSTEM
(PETER NORDIN 1994)

• Opportunity to speed up GP that is done by
slowly INTERPRETING GP program trees.
 Instead of interpreting the GP program tree,
EXECUTE this sequence of assembly code.
• Can identify small set of primitive functions
that is useful for large group of problems,
such as +, - , * , % and also use some
conditional operations (IFLTE) , some logical
functions (AND, OR, XOR, XNOR) and perhaps
others (e.g., SRL, SLL, SETHI from Sun 4).
• Then, generate random sequence of
assembly code instructions at generation 0
from this small set of machine code
instructions (referring to certain registers).
• If ADFs are involved, generate fixed header
and footer of function and appropriate
function call.
• Perform crossover possibly so as to
preserve the integrity of subtrees. • If ADFs

are involved, perform crossover so as to
preserve the integrity of the header and
footer of function and the function call.

DISCOVERY BY GENETIC
PROGRAMMING OF A CELLULAR

AUTOMATA RULE THAT IS BETTER
THAN ANY KNOWN RULE FOR THE

MAJORITY CLASSIFICATION
PROBLEM

Rule Accuracy Test cases
Best rule
evolved by bit-
string genetic
algorithm (Das,
Mitchell, and
Crutchfield
1994)

76.9% 106

GKL 1978
human-written

81.6% 106

Davis 1995
human-written

81.8% 106

Das 1995
human-written

82.178% 107

Best rule
evolved by
genetic
programming
(in this paper)

82.326% 107

Andre, David, Bennett III, Forrest H., and Koza, John R. 1996. Discovery by
genetic programming of a cellular automata rule that is better than any
known rule for the majority classification problem. In Koza, John R.,
Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors).

Genetic Programming 1996: Proceedings of the First Annual Conference,
July 28-31, 1996, Stanford University. Cambridge, MA: The MIT Press.

THE SUCCESSION OF "BEST"
CELLULAR AUTOMATA RULES FOR
THE MAJORITY CLASSIFICATION

TASK, PRESENTED IN TRUTH TABLE
ORDER FROM 0000000 TO 1111111 (I.E. 0

TO 127)

Rule State Transitions

GKL 1978
human-
written

00000000 01011111 00000000 01011111 00000000 01011111 00000000 01011111
00000000 01011111 11111111 01011111 00000000 01011111 11111111 01011111

Davis 1995
human-
written

00000000 00101111 00000011 01011111 00000000 00011111 11001111 00011111
00000000 00101111 11111100 01011111 00000000 00011111 11111111 00011111

Das (1995)
human-
written

00000111 00000000 00000111 11111111 00001111 00000000 00001111 11111111
00001111 00000000 00000111 11111111 00001111 00110001 00001111 11111111

Best rule
evolved by
genetic
programmi
ng (in this
paper)

00000101 00000000 01010101 00000101 00000101 00000000 01010101 00000101
01010101 11111111 01010101 11111111 01010101 11111111 01010101 11111111

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM

• Goal is to classify a given protein segment
(i.e., a subsequence of amino acid residues
from a protein sequence) as being a
transmembrane domain or non-
transmembrane area of the protein (without
using biochemical knowledge concerning
hydrophobicity typically used by human-
written algorithms for this task).
• Four different versions of genetic
programming have been applied to this
problem. The performance of all four
versions using genetic programming is
slightly superior to that of algorithms written
by knowledgeable human investigators.

Koza, John R. and Andre, David. 1996b. Evolution of iteration in genetic
programming. In Evolutionary Programming V: Proceedings of the
Fifth Annual Conference on Evolutionary Programming. Cambridge,
MA: MIT Press. In Press.

AUTOMATED DISCOVERY OF MOTIFS
IN PROTEIN DATABASES

• Genetic programming successfully evolved
motifs for detecting the D-E-A-D box family
of proteins and for detecting the manganese
superoxide dismutase family. Both motifs
were evolved without prespecifying their
length. Both evolved motifs employed
automatically defined functions to capture
the repeated use of common subexpressions.
The two genetically evolved consensus motifs
detect the two families either as well as, or
slightly better than, the comparable human-
written motifs found in the PROSITE
database.

Koza, John R. and Andre, David. 1996c. Automatic discovery of protein
motifs using genetic programming. In Yao, Xin (editor). 1996.
Evolutionary Computation: Theory and Applications. Singapore: World
Scientific. In Press.

COMPUTER USAGE

• Power PC 601 processor = 8 x 107 Hertz
• times 64 = 5.12 x 109 ops/second
• times 86,400 sec. =4.4 x 1014 ops / day
• time 2 days = 1015 ops

HUMAN BRAIN

• 1012 neurons operating at 103 per second =
1015 ops per second
• 1 bs = 1015 ops

PETAFLOPS COMPUTING INITIATIVE

• 1015 operations PER SECOND by 2010

AUTOMATED "WYWIWYG" DESIGN OF
ELECTRICAL CIRCUITS USING

GENETIC PROGRAMMING
• Filters

• Lowpass, highpass, bandpass LC filters
• Asymmetric passband Nielsen filter
• Crossover (woofer-tweeter) filter
• Crossover (woofer-midrange-tweeter)
• Matching Butterworth, Chebychev, elliptic

• Amplifiers (5 dB, 60 dB, 96 dB)
• Computational Circuits

• Squaring circuit
• Cubing circuit
• Square root circuit
• Cube root circuit

• Source Identification Problem
• Three-way
• Four-way (with changing environment)

• Circuit for time-optimal fly-to controller
• Temperature-sensing circuit
• Voltage reference circuit

DIFFICULTY OF AUTOMATED CIRCUIT
DESIGN

• A very hard problem
• Exponential in the number of components
• More than 10300 circuits with a mere 20
components

• An important problem
• Too few analog designers
• There is an "Egg-shell" of analog circuitry
around almost all digital circuits
• Analog circuits must be redesigned with
each new generation of process technology

• No existing automated techniques
• In contrast with digital
• Existing analog techniques do only sizing of
components, but do no not create the topology

• In analog design, the search is for a
satisfactory circuit, but not necessarily an
optimal one

USE OF AUTOMATICALLY DEFINED
FUNCTIONS AND ARCHITECTURE-

ALTERING OPERATIONS IN THE
DESIGN OF ELECTRICAL CIRCUITS

• Automatically defined functions and
architecture-altering operations

• Two-Band Crossover (Woofer and Tweeter)
Filter (with ADFs and architecture-altering
operations)
• Lowpass filter (with ADFs)

• Lowpass filter (with ADFs and
architecture-altering operations)

• Double-Bandpass Filter (with ADFs and
architecture-altering operations) – "Comb"
filters

 EMBRYO WITH TWO MODIFIABLE
WIRES Z0 AND Z1 AND CIRCUIT-

CONSTRUCTING PROGRAM TREE
(WITH TWO RESULT-PRODUCING
BRANCHES) WITH TWO WRITING
HEADS POINTING TO THE TWO

MODIFIABLE WIRES

• Embryonic electrical circuit
• Circuit-constructing program trees

• Component-creating functions
• Connection-creating functions

C FLIP

LIST1

2 3

-

DEVELOPMENT OF A CIRCUIT FROM A
CIRCUIT-CONSTRUCTING PROGRAM
TREE AND THE EMBRYONIC CIRCUIT

• Circuit-constructing program trees
• Component-creating functions
• Connection-creating functions

• Embryonic electrical circuit

Terminal Set

Function Set

Fitness Measure

Parameters
Termination
Criterion

GP A Computer
Program

Architecture

Embryo

EXAMPLE OF CIRCUIT-
CONSTRUCTING PROGRAM TREE

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

– 0.880 END FLIP L END – L -0.657 END

-0.875 -0.113 END -0.277 END -0.640 0.749 -0.123 END

–0.963 FLIP SERIES L L

– SERIES NOP

C FLIP

LIST1

2 3

4 5 6

8
7

9 10 11 12

13 14 15 17 1816 19 20 21

22

23 24 25 26 27 28 29 30 31

DEVELOPMENT OF A CIRCUIT

In Out

Constructing Program Tree

Developing Circuit

• Each function in the circuit-constructing
tree acts on a part of the circuit and changes
it in some way (e.g. creates a capacitor,
creates a parallel structure, adds a
connection to ground, etc)
• A “writing head” points from each function
to the part of the circuit that the function will
act on.
• Each function inherits writing heads from
its parent in the tree

RESULT OF THE C (2) FUNCTION

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

NOTE: Interpretation of arithmetic value

RESULT OF THE FLIP (3) – IN 2nd
RESULT-PRODUCING BRANCH

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

RESULT OF SERIES (5) FUNCTION

(LIST (C (– 0.963 (– (– -0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (– -0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

COMPONENT-CREATING FUNCTIONS
• Resistor R function
• Capacitor C function
• Inductor L function
• Diode D function
• Transistor QT0 function
• Digital AND0 function
• Transformer TRANFORMER0 function

A CIRCUIT CONTAINING A
MODIFIABLE WIRE Z0

RESULT AFTER R FUNCTION

RESULT AFTER QT0 FUNCTION

CONNECTION-CREATING FUNCTIONS
• SERIES division function
• PSS and PSL parallel division functions
• STAR1 division function
• TRIANGLE1 division function
• VIA0 function
• FLIP function

A CIRCUIT CONTAINING A RESISTOR
R1

AFTER THE SERIES FUNCTION

NETLIST WITH R1
R1 2 1 5ohms

C2 1 10

C3 1 11

C4 2 12

C5 2 13

NETLIST AFTER SERIES FUNCTION
R1 2 4 5ohms

Z6 4 3

R7 3 1 5ohms

C2 1 10

C3 1 11

C4 2 12

C5 2 13

AFTER PSS PARALLEL DIVISION

AFTER PSL PARALLEL DIVISION

AFTER VIA0 FUNCTION

A CIRCUIT CONTAINING A DIODE D1

AFTER THE FLIP FUNCTION

EVALUATION OF THE FITNESS OF A
CIRCUIT

Program Tree

+ IN OUTz0

Embryonic Circuit

Fully Designed Circuit (NetGraph)

Circuit Netlist (ascii)

Circuit Simulator (SPICE)

Circuit Behavior (Output)

Fitness

BEHAVIOR OF A LOWPASS FILTER
VIEWED IN THE FREQUENCY DOMAIN

• Examine circuit's behavior for each of 101
frequency values chosen over five decades of
frequency (from 1 Hz to 100,000 Hz) with
each decade divided into 20 parts (using a
logarithmic scale). The fitness measure

• does not penalize ideal values
• slightly penalizes acceptable deviations
• heavily penalizes unacceptable deviations

• Fitness is sum F(t) =
i�0

100
� [W f i)d(f i)]

• f(i) is the frequency of fitness case i
•d(x) is the difference between the target and
observed values at frequency of fitness case i

• W(y,x) is the weighting at frequency x

LOWPASS FILTER – CONTINUED

• 61 points in the 3-decade interval from 1 Hz
to 1,000 Hz

• For voltage equaling the ideal value of 1.0
volts, the deviation is 0.0
• For voltage between 970 and 1,000
millivolts, the absolute value of the deviation
from 1,000 millivolts is weighted by a factor
of 1.0
• For voltage less than 970 millivolts, the
absolute value of the deviation from 1,000
millivolts is weighted by a factor of 10.0

• 35 points from 2,000 Hz to 100,000 Hz
• For voltage equaling the ideal value of 0.0
volts, the deviation is 0.0
• For voltage between 0 millivolts and 1
millivolt, the absolute value of the deviation
from 0 millivolts is weighted by a factor of
1.0
• For voltage above 1 millvolt, the absolute
value of the deviation from 0 millivolts is
weighted by factor of 10.0

• 5 "don't care" points between 1,000 Hz and
2,000 Hz
• Unsimulatable programs = 108 penalty
• Hits is number (0–101) of compliant points
(i.e., those getting weight of 1.0)

EVALUATION OF THE FITNESS OF A
CIRCUIT

Start

Set CIRCUIT =
embryonic circuit

Evaluate individual
circuit-constructing program tree by
progressively applying component-
creating and connection-modifying
functions to the current CIRCUIT

Translate CIRCUIT
into NETLIST

Create SIMPLIFIED NETLIST by
removing wires, removing dangling

components, removing remaining
isolated subcircuits, inserting high-

resistance DC path to ground for
isolated nodes , and consolidating

series and parallel combinations of
like components

Run SPICE simulator on
SIMPLIFIED NETLIST to

create tabular values of
electrical behavior

End

DESIGN OF A LOWPASS FILTER
100%-COMPLIANT "7-RUNG LADDER"

100%-COMPLIANT "19-RUNG LADDER"

100%-COMPLIANT "BRIDGED T"

DESIGN OF A LOWPASS FILTER USING
AUTOMATICALLY DEFINED

FUNCTIONS (ADFs)

1
2

3 4
ADF0

DEFUN

NOP

V1

L

SERIES

THVIA3C

ENDV5 FLIP

FLIP

PSS

PSS PSS

END END

END

LIST

NOP

V4V3

SERIES

L PSS

V2 L

END

END END

END END END C

END END

PSS FLIP ADF0FLIP

ADF0ADF0FLIP

ADF0

END END END END END

END END END

5

6

7

8

9

10
11

12 13 14
15

16

17
18

19
20 21 22

23 24 25 26 27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 42 43 44

45 46 47 48 49
50

51

52 53 54 55

EDITED VERSION OF ADF0

EMBRYONIC CIRCUIT FOR A TWO-
BAND CROSSOVER (WOOFER AND

TWEETER) FILTER

L C

LIST

C

1

3
42

DESIGN OF A TWO-BAND CROSSOVER
(WOOFER AND TWEETER) FILTER

BEST CIRCUIT OF GENERATIONS 0, 20,
AND 137

DESIGN OF A TWO-BAND CROSSOVER
(WOOFER AND TWEETER) FILTER

FREQUENCY DOMAIN BEHAVIOR OF
THE BEST CIRCUIT OF GENERATIONS

0, 20, AND 137

�

FREQUENCY DOMAIN BEHAVIOR OF
BUTTERWORTH FILTERS OF ORDER 3,

5, AND 7

DESIGN OF A THREE-BAND
CROSSOVER (WOOFER-MIDRANGE-

TWEETER) FILTER
BEST CIRCUITS OF GENERATIONS 0, 54,

AND 174

DESIGN OF A THREE-BAND
CROSSOVER (WOOFER-MIDRANGE-

TWEETER) FILTER
FREQUENCY DOMAIN BEHAVIOR OF

THE BEST CIRCUIT OF GENERATIONS
0, 54, AND 174

GENETICALLY EVOLVED 5 DB
AMPLIFIER FROM GENERATION 45

VOLTAGE GAIN STAGE

DARLINGTON EMITTER FOLLOWER
SECTION

REDRAWN BEST-OF-GENERATION
GENETICALLY EVOLVED 5 DB

AMPLIFIER FROM GENERATION 45
SHOWING THE VOLTAGE GAIN STAGE

AND DARLINGTON EMITTER
FOLLOWER SECTION

Voltage Gain Stage

Darlington
Emitter-
Follower
Stage

96 DB AMPLIFIER – BEST CIRCUIT OF
GENERATION 86

ADF0

96 DB AMPLIFIER – BEST OF GENS 0, 42,
50, 86

96 DB AMPLIFIER – AC SWEEPS – BEST
OF GENS 0, 42, 50, 86

CUBE ROOT COMPUTATIONAL
CIRCUIT FROM GENERATIONS 0, 17, 60

CUBE ROOT COMPUTATIONAL
CIRCUIT – GENS 0, 17, 60

OTHER COMPUTATIONAL CIRCUITS

• Square root circuit
• Squaring circuit
• Cubing circuit

THREE-WAY SOURCE IDENTIFICATION
PROBLEM – GENERATIONS 0, 20, 106

THREE-WAY SOURCE IDENTIFICATION
PROBLEM – GENERATIONS 0, 20, 106

TIME-OPTIMAL FLY-TO PROBLEM
CASES 1 AND 2

x

y

(x ,y)1 1

(x3,y3)

(0,–R)

R

(0,+R)

R

(x ,y)2 2

(x4,y4)

(x5,y5)
(x6,y6)

(x7,y7)

CASE 3

x

y

(x ,y)1 1

(x3,y3)

(0,–R)

R

(0,+R)

R

(x ,y)2 2

(x4,y4)

(x5,y5)
(x6,y6)

(x7,y7)

P

TIME-OPTIMAL FLY-TO PROBLEM
CASE 4

x

y

(x ,y)1 1

(x3,y3)

(0,–R)

R

(0,+R)

R

(x ,y)2 2

(x4,y4)

(x5,y5)
(x6,y6)

(x7,y7)

Q

TIME-OPTIMAL FLY-TO PROBLEM –
GENERATIONS 0 AND 31 (WITH NEAR-

OPTIMAL FITNESS OF 1.541 HOURS)

PROMISING GP APPLICATION AREAS

• Problem areas where a good approximate
solution (but not necessarily optimal
solution) is satisfactory

• design
• control
• data mining
• forecasting
• classification
• image processing and computer vision

• Problem areas where discovery of the size
and shape of the solution is a major part of
the problem

• Problem areas involving many variables
whose inter-relationship is not well
understood

PROMISING GP APPLICATION AREAS –
CONTINUED

• Problem areas where programming by
hand is difficult

• parallel computers
• FPGAs
• cellular automata
• multi-agent strategies
• distributed AI

• Problem areas where large computerized
databases are accumulating and
computerized techniques are needed to
analyze the data

• genome and protein sequences
• astronomy
• petroleum
• marketing and financial databases
• satellite data
• weather
• World Wide Web

DIRECTIONS FOR FUTURE RESEARCH

• Strive for GP results in difficult, real-world
problems that typically require human
intelligence to solve

• Strive for GP results that would be
publishable or commercially valuable in
their own right

• Design of complex structures
• Multi-agent strategies
• Data-mining
• Test script generation / IC testing
• Exploiting mental models to solve problems
• Auto-parallelization
• Grammar induction
• Local operation algorithms
• Techniques for handling vectors, arrays,
and other complex data structures
• Assembly code approaches
• Evolvable hardware

• Digital Field Programmable Gate Arrays
(FPGA)
• Analog Field Programmable Analog Arrays
(FPAA)

DIRECTIONS FOR FUTURE RESEARCH
– CONTINUED

• Modularity
• Exploiting many levels of hierarchy
• Methods for dealing with large numbers of
ADFs
• Finding the right kind of parameterizable
modularity for different representations:
• Circuits, FPGA, Neural Programming

• Heuristic Exploration
• “Creep” operators for constants
• Interleaved methods of search – crossover,
simulated annealing
• Internal Reinforcement
• Smart Crossover
• Use statistics to guide reproductive
operations

• Meta-GP
• Automatically tweak the knobs
• Variable operator percentages
• Variable population size

• Issues of Typed GP

DIRECTIONS FOR FUTURE RESEARCH
– CONTINUED

• Theory
• GP Schema theorem
• What make a problem difficult?
• Role of deceptiveness in GP
• Characterizing suitability of representations
for problems:
• Issue of introns
• Rate of exploration vs. rate of convergence

• Representations
• Dealing with sequences and matrices of data
• Trees vs. Linear vs. Graphical genomes
• Phenotype vs. Genotype
• Handley’s statistical computing zones
• Teller’s image processing operators
• Memory usage

DIRECTIONS FOR FUTURE RESEARCH
– CONTINUED

• Long-term learning and transfer
• Goal is to evolve programs for more than a
single problem
• Seeding
• Noah operator -- seed next run with best of
previous
• Start over with new function set that
includes ADFs from previous run
 • Seed the population with either a hand
coded or evolved individual by including
multiple mutations as seed individuals
 • Learn parameters for the run (such as
parameters for the grammar of tree creation)
and use from one run to the next

DIRECTIONS FOR FUTURE RESEARCH
– CONTINUED

• Solving multiple problems
• Hox gene
• Use same ADFs for multiple RPBs to solve
different problems, or to work together on a
single problem
 • Solving multiple problems at the same time
might actually be easier, especially if there are
possible shared subroutines

• Learning to learn
• Evolving programs that learn
• Evolving programs that learn and use a
complex mental model
• Evolve a program that performs learning for
a neurologically plausible recurrent network
of neurons
• Explore the Baldwin effect with respect to
evolving learning

7 GP BOOKS AND VIDEOTAPES
• Koza, John R. Genetic Programming: On
Programming Computers by Means of Natural
Selection. Cambridge, MA: MIT Press 1992.
• Koza, John R. and Rice, James P. Genetic
Programming: The Movie. Cambridge, MA:
MIT Press 1992. (VHS NTSC, PAL,
SECAM)
• Kinnear, Kenneth E. Jr. (editor). Advances
in Genetic Programming. Cambridge, MA:
MIT Press 1994.
• Koza, John R. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press 1994.
• Koza, John R. Genetic Programming II
Videotape: The Next Generation. Cambridge,
MA: MIT Press 1994. (VHS in NTSC, PAL,
SECAM)
• Peter J. Angeline and Kinnear, Kenneth E.
Jr. (editors). 1996. Advances in Genetic
Programming 2. MIT Press.
• Koza, John R., Goldberg, David E., Fogel,
David B., and Riolo, Rick L. (editors).

Genetic Programming 1996: Proceedings of
the First Annual Conference, July 28-31,
1996, Stanford University. Cambridge, MA:
MIT Press.

GENERAL BOOKS ON GENETIC
ALGORITHMS

• Goldberg, David E. Genetic Algorithms in
Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley l989.
• Holland, John H. Adaptation in Natural and
Artificial Systems, Ann Arbor, MI: University
of Michigan Press 1975. Now available as
2nd edition from The MIT Press 1992.
• Davis, Lawrence (editor). Genetic
Algorithms and Simulated Annealing
London: Pittman l987.
• Davis, Lawrence. Handbook of Genetic
Algorithms Van Nostrand Reinhold.1991.
• Michalewicz, Zbignlew. Genetic Algorithms
+ Data Structures = Evolution Programs.
Berlin: Springer-Verlag 1992.
• Mitchell, Melanie. 1996. An Introduction to
Genetic Algorithms. Cambridge, MA: The
MIT Press.

GP CONFERENCE PROCEEDINGS

• Koza, John R., Goldberg, David E., Fogel,
David B., and Riolo, Rick L. (editors). 1996.
Genetic Programming 1996: Proceedings of
the First Annual Conference, July 28-31,
1996, Stanford University. Cambridge, MA:
MIT Press.
• Koza, John R., Deb, Kalyanmoy, Dorigo,
Marco, Fogel, David B., Garzon, Max, Iba,
Hitoshi, and Riolo, Rick L. (editors). 1997.
Genetic Programming 1997: Proceedings of
the Second Annual Conference, July 13–16,
1997, Stanford University. San Francisco,
CA: Morgan Kaufmann.

1997 CONFERENCES
• FEA-97 – March 3 – 5, 1997 – Research
Triangle Park, NC
• GP-97 – Stanford, July 13-16 (Su-W), 1997

E-MAIL: gp@aaai.org
WWW: www.genetic-
programming.org

• ICGA-97 – July 20 – 23, 1997 – East
Lansing, Michigan
• AAAI-97 – Providence, RI – July 27 – 31,
1997
• ECAL-97 - July 28 – 31, 1997, Brighton,
UK
• IJCAI-97–Nagoya, Japan – August 24-29,
1997
• GALESIA-97, September 1997 - Glasgow

1998 CONFERENCES
• EP-98 –March 25-27 (W-F), 1998 – San
Diego
• ALIFE-98
• ICEC-98 – May 1998 – Archorage, Alaska
• FOGA–98 – Charlottesville, VA – July 18 –
21, 1998 (TENTATIVE!!!)
• GP-98 – Madison, Wisconsin – July 22-25
(W-Sa), 1998

E-MAIL: gp@aaai.org
WWW: www.genetic-
programming.org

• AAAI-98 – Madison, Wisconsin – July 26 -
30, 1998 (Su-Th)
• ICES-98 - Lausaune - Sept 24 - 26 (Th-Sa),
1998
• PPSN-98 – Amsterdam - Sept 27 - Oct 1
(Su-Th), 1998

1999 CONFERENCES
• IJCAI-99 – Stockholm – July 31 - Aug 6,
1999

GP E-MAIL LISTS

GENETIC PROGRAMMING (GP) LIST
• To subscribe, send e-mail message to:
Genetic-Programming-
Request@CS.Stanford.Edu
• Be sure to send to exactly this address,
(which includes the word "Request")!
• The BODY of your message must consist of
exactly the words:
subscribe genetic-programming

SPECIAL BAY AREA GP LIST
(USED ONLY TO ANNOUNCE LOCAL GP
MEETINGS AND BAY AREA GP
LUNCHES)
• To subscribe, send e-mail message to:
BA-GP-Request@CS.Stanford.Edu
• Be sure to send to exactly this address,
(which includes the word "Request")!
• The BODY of your message must consist of
exactly the words:
subscribe BA-GP

JOHN KOZA'S HOME PAGE

http://www-cs-
faculty.stanford.edu/~koza/

Contains
• Information on GP-96, GP-97, GP-98
conferences
• Links to people doing GP research
• List of PhD theses in progress
• Links to many other GP resources
• Abstracts of JK's publications
• Links to other GP WWW pages
• Links to Langdon's complete GP
bibliography

